
Echoes and Delays: Time-to-build in Production

Networks∗

Edouard Schaal

CREI, ICREA, UPF, BSE and CEPR

Mathieu Taschereau-Dumouchel

Cornell University

February 2025 – Preliminary and Incomplete

Abstract

We study how time-to-build and delivery lags affect the propagation of sectoral and aggre-

gate shocks in an economy with input-output linkages. Time-to-build significantly contributes
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and buyer centralities. Shocks propagate asynchronously through the network, generating en-

dogenous fluctuations via an echo effect. These fluctuations arise due to the presence of loops in
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1 Introduction

Firms in a modern economy rely extensively on goods and services produced by other suppliers.

The time required to produce these intermediate inputs varies dramatically across industries. While

some inputs, like components for furniture assembly or readily deliverable services, can be produced

rapidly, others necessitate significantly longer production cycles. Building large transport vessels

like container ships, for example, typically takes one to two years from order to delivery. Specialized

energy infrastructure such as offshore oil rigs can have even longer lead times. Kydland and Prescott

(1982) propose a model of business cycle fluctuations in a representative firm economy with time

to build but without production networks.

This variation in time-to-build has important consequences for how economic shocks are trans-

mitted through the production network. While shocks propagate rapidly along paths involving

firms with short production times, they can take years to progress through firms with longer build

times. When aggregated, this asynchronous propagation shapes the persistence of macroeconomic

quantities. The network structure of the economy and the time-to-build distribution therefore

influence the time series properties of GDP. As an extreme example, cycles in the production net-

work, as they create paths for shocks to return to their originating firms, can give rise to recurring

business cycle fluctuations.

Our work is motivated by evidence from the U.S. Census Bureau and Compustat which show

large variations in backlog ratios, that is the time it would take for a firm to complete its outstanding

orders at the current level of production. For instance, this backload ratio indicator shows that

the “Printing ink manufacturing” sector fulfills orders almost immediately (0.15 months), while the

equivalent number for the “Guided missile and space vehicle manufacturing” sector is two years.

In addition, input-output tables provided by the Bureau of Economic Analysis show that the U.S.

production network is replete with cycles of different lengths. As our analysis shows, these cycles

can generate recurring fluctuations in economic activity.

We extend the classical framework of Long and Plosser (1983) by introducing heterogenous

time-to-build into an otherwise standard multisector economy. Firms in the model use labor and

intermediate goods as inputs and are subject to productivity shocks. Crucially, and in stark contrast

with the prevalent roundabout framework, it takes time for goods to be produced. We also allow

for heterogeneity across firms in this time-to-build dimension. Since production takes time, the

response of the economy to a shock can be delayed. For instance, a shock to a sector with a lengthy

production process will only affect that sector’s output after a few periods. Other producers that

rely on the output of the affected sector will see their own production respond with an additional

delay, and so on, as we move further in the production network. Input-output linkages thus imply

that delays compound along supply chains.

We consider a competitive equilibrium in this setup. Since markets are complete and that
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there are no externalities, this equilibrium is efficient, and we therefore focus on the recursive

problem of a social planner. We show that the value function associated with this problem can be

written in closed-form. Building on this result, we provide a version of Hulten’s (1978) theorem

for network economies with heterogenous time-to-build. We show that the impact of a marginal

increase in a sector’s productivity on welfare is proportional to a time-adjusted version of that

sector’s Domar weight. This time adjustment captures how production delays postpone the time

at which productivity shocks materialize.

To understand how time-to-build affects the persistence of shocks in the economy, we introduce

a measure of a shock’s average duration which captures how long it takes for output across sectors

to respond to a disturbance. We show that we can decompose this average duration as the sum of

multiple adjustment iterations. Intuitively, a shock to a sector triggers a response of its output with

a delay that corresponds to its production time. This change in output then triggers a second round

of adjustment that takes place through all of that sector’s customers. Once again, production times

matter, and the time it takes for these customers to produce their goods matters for the average

duration of the shock. This process then goes through additional rounds, with decaying intensities.

Our average duration measure also allows us to identify bottleneck sectors, those with large seller

and buyer centralities. Those sectors play an important role in supply chains, and we show that

any marginal increase in their production times lead to large increases in the persistence of shocks.

Exploring further the implications of heterogeneous time-to-build for the dynamic properties

of the economy, we study the eigenvalues of the dynamic system described by the model. In the

Long and Plosser (1983) benchmark, the eigenvalues are small and mostly real, indicating that

after a shock the economy return rapidly and monotonously to its steady state. In contrast, in

our full model eigenvalues are much larger and feature an important imaginary component. As a

result, one-time shocks can have long-lasting effects and generate recurrent cycles.

We then turn to the model ability to generate oscillations, which we define as a recurring change

in sectoral output. Two ingredients are necessary to generate oscillations: 1) non-zero production

times, and 2) cycles in the production network. We show that when both ingredients are present,

a shock can generate recurring fluctuations in economic activity. Cycles are therefore absent from

roundabout production networks or those with purely vertical supply chains.

We rely on Fourier analysis to characterize how the structure of the production network and

the distribution of production times affect the time series properties of sectoral output. One of our

main results describes how cycles in the production network contribute to the Fourier spectrum,

which describes the set of frequencies at which economic activity oscillates. Our decomposition

result shows that the durations (i.e., total production times) and weights (i.e., the product of input

shares) of the network’s cycles shape the frequencies at which output oscillates. Applying this

decomposition to the U.S., our findings indicate that the network’s cycles virtually account for the

entirety of the model-implied sectoral output spectrum.
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Moving from the individual sectors to the cross-sectoral behavior of the economy, we show

that the combination of heterogeneous time-to-build and input-output linkages generate complex

dynamic comovements across sectors, which we illustrate with various examples of multi-sector

impulse response functions. Echoing our spectral decomposition at the sectoral level, we show that

comovements between sectors at any given lags can be decomposed into the network’s dominant

walks. Aggregating across sectors, we show that oscillations persist in the aggregate and characterize

the Fourier spectrum of aggregate GDP into a within-sector component, accounted for by the

network’s dominant cycles, and a cross-sector component, governed by the network’s dominant

walks.

Literature Review

Our work extends the classical work of Long and Plosser (1983) in which firms are interconnected

through production networks and take one period to produce, such that inputs use today contribute

to output next period. We generalize this setup to include heterogenous production times across

firms. One of our main findings is that this generalization allow richer dynamic patterns to arise.

We also use Fourier analysis to describe how the structure of the production network affect the

time series properties of economic variables.

Our work also relates to a large literature that studies how shocks propagate through produc-

tion networks. In an influential paper, Acemoglu et al. (2012) explores how idiosyncratic shocks

can given rise to large aggregate fluctuations through their propagation over in input-output link-

ages. Acemoglu et al. (2017) and Baqaee and Farhi (2019a) describe how network interactions can

generate thick-tailed aggregate output distributions. Another strand of work that includes Jones

(2011), Baqaee and Farhi (2019b) and Liu (2019) has studied the impact of distortions in produc-

tion network economies. These papers, as well as the bulk of the literature, considers static models

with roundabout production networks. In that setup, all transactions occur in a single period, so

that producers effectively use their own output as an input. In contrast, production in our setup

takes time which leads to cycles and persistent fluctuations.

Two papers are closer to our work. Liu and Tsyvinski (2024) study a framework in which firms

must pay a cost for changing inputs. As a result, decisions become dynamic and shocks can have

persistent effects. Carvalho and Reischer (2021) explore aggregate persistence in a network econ-

omy with one-period time-to-build, as in Long and Plosser (1983). They show that the economy

aggregates to an ARMA process and explore how the process’ coefficients depend on the produc-

tion network. In contrast to both of their setups, we introduce heterogenous time-to-build in an

otherwise business cycle framework. We also rely on Fourier analysis to explore how the structure

of the network affects the time series properties of the economy.

We also relate to a literature, pioneered by Benhabib and Nishimura (1979), that shows that
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limit cycles can emerge in the multi-sector neoclassical growth model with multiple stocks of capital.

In contrast to capital, intermediate inputs in our model are short-lived, and the cycles that emerge

through production network linkages always die out over time.

Our work is theoretical, but an empirical literature in trade argues that shipping times and

delays are important. Djankov et al. (2010) find that an extra day of delay reduces trade by at

least 1 percent. Hummels and Schaur (2013) estimate that an extra transit day is equivalent to a

tariff that can be as high as 2 percent. Alessandria et al. (2023) study the impact of supply chain

delays during the COVID pandemic.

The rest of this paper is organized as follows. The next section provides an overview of time-

to-build in the U.S. data. The following section presents the model and derives its closed-form

solution. In Section 4, we study how delivery time contribute to shock propagation and identify

bottlenecks sectors. Section 5 describes how cycles in the production network can create cycles

in sectoral time series, and Section 6 provides a similar analysis for sectoral comovements and

the aggregate economy. We provide a quantitative illustration of the mechanisms of the model in

Section 7. The last section concludes.

2 Data

To illustrate the implications of time-to-build in production networks, we examine intersectoral

linkages in the U.S. economy. Throughout the paper, we use the 2017 Supply-Use Input-Output

tables from the Bureau of Economic Analysis (BEA). The 2017 table represents the most recent

data available with 402 industries at the 6-digit level. After excluding government-related sectors,

we iteratively remove other sectors whose goods are neither consumed nor used as intermediates,

leaving us with 372 sectors.

A common approach to measuring time-to-build is to consider backlog ratios (Liu and Tsyvinski,

2024). We define the backlog ratio for each industry as the average ratio of the stock value of unfilled

orders over the flow value of goods delivered in a period. This measure reflects the number of periods

it would take for an industry to fulfill all its outstanding orders at the current level of production.

Although the ratio fluctuates over time due to seasonality and cyclical forces, its long-term average

serves as a proxy for the time required to produce in a given industry.1 We construct this measure

using two different sources. The U.S. Census Manufacturers’ Shipments, Inventories and Orders

(M3) survey provides monthly statistical data allowing us to compute the average backlog ratio

over the period 1992 to 2024. The dataset is broad-based and includes nearly all manufacturing

companies with more than $500 million annual shipments but is restricted to the manufacturing

sector and aggregated to 10 subsectors. We also use Standard and Poor’s Compustat database,

1In the steady-state of our model, the backlog ratio is exactly equal to the duration between the time when
production is initiated and final delivery.

4



whose Order Backlog variable allows us to construct the backlog ratio over the period 1970-2024.

We convert the annual series into monthly data and compute the average within each 6-digit NAICS

sector. The Compustat dataset only includes publicly-listed firms, but offers a more disaggregated

and broader sectoral coverage.

Figure 1 shows the distribution of backlog ratios in months of production across sectors. The

average backlog ratio is 5.38 months in the Census and 5.08 months in Compustat. As the figure

shows, there is a large heterogeneity across sectors. Some sectors have very low backlog ratios and

can fulfill their outstanding orders within a month, but backlogs can go up to 2 or 3 years in other

sectors.2 The peak is observed around 2-3 months for the Census (manufacturing only) and 5-6

months in Compustat.

Figure 1: Distribution of backlog ratios in months across 6-digit sectors

3 Model

To understand the most fundamental ways in which time-to-build and delays affect the propagation

of shocks in a production network, we build on the frictionless benchmark of Long and Plosser

(1983) (LP83 hereafter), to which we introduce heterogeneity in delivery lags.

3.1 Notation

In what follows, we use bold notation for vectors and matrices. In the case of a column vector x,

xi denote its ith-row element. In the case of a matrix M, Mij denote its element in the ith row

2Some examples of the lowest backlog ratios include 0.15 for “Printing ink manufacturing” and 0.24 for “Sugar
and confectionery product manufacturing”. Other examples of the largest backlogs include 24.0 months for “Guided
missile and space vehicle manufacturing” or 25.5 for “Facilities support services” (Compustat).
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and jth column. If x an N × 1 column, the matrix diag(x) is the N ×N diagonal matrix whose

(i, i)th element is xi. If a is a real number and x an N × 1 column vector, ax is the column vector

(ax1 , . . . , axN )′. IN is the N ×N identity matrix. 1 is an N × 1 vector with ones in each row and

1{condition (i)} is an indicator vector with ith element equal to 1 when condition(i) is satisfied, 0

otherwise. Finally, we denote by δi the N × 1 vector whose ith element is 1 and all other rows are

0.

3.2 Environment

Time is discrete. There are N goods, each produced by a competitive sector. An infinitely-lived

representative household maximizes its expected discounted utility over the consumption of the N

goods:

E

∞∑

t=0

βtU (c1t, . . . , cNt) ,

where 0 < β < 1 is the discount factor and cnt is the quantity of good n consumed at time t. The

household is endowed with one unit of labor which is supplied inelastically to firms.

Firms in sector n = 1, . . . , N operate the production technology

ynt = AntFn (lnt, xn1,t, . . . xnN,t) , (1)

where Ant is sector n’s total factor productivity (TFP), lnt is the labor it employs and xnm,t is the

amount of intermediate inputs it purchases from sector m at time t. The vector of sector-specific

productivities {Ant}
N
n=1 follows a first-order Markov chain that we later define more specifically.

Importantly, production takes time: we model time-to-build as delivery lags. We assume that it

takes τn periods before goods produced in sector n can be delivered either to the household for

direct consumption or to other firms for their own production. We denote Xnτ the aggregate

amount of good n scheduled for delivery τ periods from now.

3.3 Planning problem

Markets are complete and operate under perfect competition. Under the assumption that U is

neoclassical, the economy is efficient and we solve the planning problem.

We write the planning problem recursively. Because of the delivery lag structure, its state

variables include the entire vector of goods from sector i scheduled for delivery from today up to

τn − 1 periods from now, {Xnτ}
τn−1
τ=0 . The planning problem can be written as

V
(

{An}
N

n=1
, {X1τ}

τ1−1

τ=0
, . . . , {XNτ}

τN−1

τ=0

)

= max
cn,ln,xnm,yn

U (c1, . . . , cN)

+ βE
[

V
(

{A′

n}
N

n=1
, {X ′

1τ}
τ1−1

τ=0
, . . . , {X ′

Nτ}
τN−1

τ=0

)]
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subject to the production functions (1) and the constraints, for all 1 ≤ n ≤ N :

N∑

n=1

ln ≤ 1, (2)

cn +

N∑

m=1

xmn ≤ Xn0, (3)

X ′
nτ = Xnτ+1 for 0 ≤ τ < τn − 1 (4)

X ′
nτn−1 = yn, (5)

Equation (2) ensures that total employed labor does not exceed the endowment of time. Equation

(3) is the resource constraint on good n delivered today, which must be either consumed or used

as an intermediate inputs. Equations (4) and (5) provide the law of motion for the inventories of

goods Xnτ to be delivered in the future. Specifically, the quantity of good n produced today, that

will be delivered τn periods from now, appears in the inventories to be delivered τn − 1 periods

from tomorrow.

3.4 Analytical solution

The need to track the inventories of goods to be delivered in the future renders the planning

problem intractable for many real-world applications (e.g., thousands of state variables when using

the BEA’s input-output tables). Fortunately, under a particular parametrization, the economy

admits a closed-form solution: under the assumption that U is logarithmic and F is Cobb-Douglas,

income and substitution effects cancel out, ensuring that the shares of consumption, intermediate

inputs and labor remain fixed. In other words, despite the presence of heterogeneous time-to-build

across sectors, quantities evolve in fixed proportion to the aggregate supply of goods, allowing one

to derive analytical solutions for the economy’s equilibrium objects.

We therefore assume from now on that preferences are logarithmic:

U (c1, ..., cN ) =

N∑

n=1

γn log cn, γn ≥ 0,

N∑

n=1

γn = 1, (6)

and that the production function Fn is Cobb-Douglas with constant returns-to-scale

Fn (l, x1, ..., xN ) = lαn

N∏

m=1

xωnm
nm , αn +

∑

m

ωnm = 1, (7)

and we denote Ω the matrix of intermediate input shares, such that [Ω]nm = ωnm. Proposition 1

below summarizes the results behind the analytical solution:
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Proposition 1. Under assumptions (6) and (7), the planner’s value function can be expressed as

V
(

{An}
N
n=1 , {X1τ}

τ1−1
τ=0 , . . .

)

=
N∑

n=1

τn−1∑

τ=0

βτ ζn logXnτ +G
(

{An}
N
n=1

)

+ κ

where

ζ =
(
I− [Ωdiag (βτ )]

′
)−1

γ (8)

G
(

{An}
N

n=1

)

=
∑

n

βτnζn logAn + βE
[

G
(

{A′

n}
N

n=1

)]

(9)

and the allocation satisfies

cn = cnXn0

xnm = xnmXn0

ln = ln,

where cn, xnm, ln and κ are constants, whose expressions can be found in Appendix B.

This result establishes that under log preferences and Cobb-Douglas production the planner’s

value function is logarithmic. Specifically, it depends on two main components: one related to the

stock of inventories {Xnτ} and one associated with productivity {An}. The inventory component

shows that, unsurprisingly, the household discounts goods that become available further in the

future more heavily through βτ . Different goods also contribute differently to welfare, as captured

by the weights {ζn}. Equation (8) makes clear that the household prefers goods that are 1)

important in the utility bundle (high γn), or 2) are important (direct or indirect) inputs in the

production of goods with high γ. This last channel is captured by the modified Leontief inverse
(
I− [Ωdiag (βτ )]′

)−1
. Unlike in static models (τ = 0), the discount rate β plays a role here,

so that a good n has a greater social value (high ζn) if it used in the production of goods with

short time-to-build. Those are the goods that are enjoyed quickly by the household, and so their

contribution to welfare is less discounted.

We can get further intuition into ζ by taking advantage of the link between the equilibrium

allocation and the planner’s problem. Setting prices equal to their marginal welfare value, we can

define the spot price of good n for immediate delivery as3

pn =
∂V

∂Xn0
=

ζn
Xn0

.

Using that definition, ζ coincides with the vector of Domar weights, as the following result shows.

3We refer the reader to the the proof of Proposition 1 in the Appendix for an expression of the wage.
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Lemma 1. The coefficients ζn are equal to the consumption-time adjusted Domar weights,

ζn =
pntynt−τn

V At
,

where V At =
∑

pntcnt is aggregate value added.

As usual, the Domar weights are simply the shares of a good’s sales in nominal GDP (recall that

ynt−τn is the amount of good n that becomes available at t). Figure 11 in the Appendix displays

the model-implied Domar weights.

The household’s value function also depends on the productivity component G ({An}), which

is described by the recursive equation (9).4 We can use the envelope theorem to get further insight

in how An affect welfare. Assuming temporarily that the TFP shocks Ant are iid, we find that

∂V

∂logAn
= βτnζn. (10)

Intuitively, the impact of a productivity shock An only materializes τn periods later, which explains

the discounting. The Domar weight ζn, as it summarizes the impact of the shock on aggregate value

added at t+ τn, also plays a role. Expression (10) is the equivalent of Hulten’s (1978) theorem in

our setting, and shows that the theorem must be adjusted to take into account that production is

not immediate.

Finally, the last part of Proposition 1 shows that the household consumes a constant share

cn of the available stockXn0 of good n and that the remainder is used as intermediate input for

production. The Cobb-Douglas production function and the fixed supply of labor also imply that

the amount of labor assigned to each sector is constant.

3.5 Output Dynamics

The dynamics of output in each sector are straightforward to compute, thanks to the fixed share

result: ynt = Antl
αn

n

∏

m (xmym,t−τm)
ωnm . Assuming that the TFP process is stationary with mean

E [An] = Ass
n , we evaluate sectoral output in log-deviation from the nonstochastic steady state in

which all productivities are held constant at their mean:

ŷnt = Ânt +
∑

ωnmŷm,t−τm , (11)

where x̂ = log x − log xss and xss is the value of variable x in the nonstochastic steady state. In

other words, the vector of sectoral outputs ŷt follows the VAR(τmax) process

ŷt = Ω1ŷt−1 + . . .+Ωτmax ŷt−τmax + Ât (12)

4So far we have only assumed that {Ai} follows a first-order Markov process. With additional assumptions we
can often characterize G in closed-form.
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where Ωτ = Ωdiag (1 {τ = τi}) and 1 is an indicator vector and τmax = max
n

τn.

The framework nests two well-known cases:

1. Roundabout production. This case is the most studied version in the literature and

corresponds to having no time-to-build (τn = 0). The output vector satisfies the equation

ŷt = Ωŷt + Ât, which yields the well-known Leontief inverse (Acemoglu et al., 2012):

ŷt = (I−Ω)−1 Ât = Ât +ΩÂt +Ω2Ât + . . . (13)

This equation shows that the output vector can be expressed as the sum of the direct effects of

the productivity shocks on each sector (Ât) and all the higher-order effects through multiple

rounds of the production networks (ΩÂt +Ω2Ât + . . .).

2. Long and Plosser (1983). This version of the model assumes τn = 1. In this case, equation

(12) becomes

ŷt = Ωŷt−1 + Ât = Ât +ΩÂt−1 +Ω2Ât−2 + . . . (14)

Here, the output vector follows a VAR(1) with an MA representation that expresses the output

vector at time t as the sum of the impacts of contemporaneous productivity shocks (Ât) and

past shocks, compounded with the corresponding number of iterations of the production

network
(

ΩkÂt−k

)

.

4 Persistence and Delays

The introduction of time-to-build in production networks has significant implications for the per-

sistence of shocks. In this section, we introduce a persistence statistic to assess how delivery times

in different sectors influences shock propagation. We then explore delay shocks and identify sectors

that act as bottlenecks in this process.

To focus on the propagation effects driven by time-to-build and intersectoral linkages solely,

we eliminate other sources of persistence and assume that productivity shocks are i.i.d. from this

section to Section (6).

4.1 Persistence

A natural consequence of time-to-build is to make shocks more persistent, as disruptions in one

industry take time to affect both immediate and distant downstream sectors. However, the degree

of persistence depends on the structure of the production network and the specific time-to-build

within each sector. We introduce a simple persistence statistic that can be computed analytically to

determine the average duration of a shock. Additionally, we use this statistic to identify bottleneck

sectors—those where delays significantly amplify the persistence of aggregate shocks in the economy.
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Denote by ŷt

(

Â
)

the vector of impulse responses of output in each sector at time t to a

particular combination of shocks Â ≥ 0 at time 0, starting from the steady state. We define the

average duration of a shock as

Tw

(

Â
)

=
∞∑

τ=0

∑

n

τwnŷnτ

(

Â
)

, (15)

where w ≥ 0 is a vector of sectoral weights. We can interpret Tw as the expectation of a random

variable which takes value τ with probability
∑

nwnŷnτ

(

Â
)

. The longer a shock persists (i.e.,

higher amplitude of the impulse response at high τ), the higher the average duration Tw. Note, for

instance, that T is exactly 0 in the roundabout production case with iid shocks. Since the response

of the economy is linear and scales up with the size of the shocks, we normalize the shocks to 1 for

the purpose of cross-sectoral comparisons.

Proposition 2. The average duration Tw

(

Â
)

for weighting vector w > 0 is

Tw

(

Â
)

= w′Ω (I−Ω)−1
diag (τ ) (I−Ω)−1 Â. (16)

While expression (16) may not be obvious at first glance, its interpretation is nonetheless in-

tuitive. Consider a shock to a single sector n, that is Â = δn, and rewrite the Leontief inverse

(I−Ω)−1 as
∑∞

k=0Ω
k. Then,

Tw (δn) = w′Ω

(
∞∑

k=0

Ωk

)

︸ ︷︷ ︸

(a)

diag(τ )

(
∞∑

k=0

Ωk

)

δn

︸ ︷︷ ︸

(b)

.

To assess the contribution of each sector’s delivery time, we first need to determine how frequently

and intensely a sector is affected by the shock. This is represented by term (b) which quantifies

the total number of walks5 of any length k from sector n to any other intermediate sector m,

weighted by the product of input shares along the path. Each of these walks is then multiplied

by the corresponding τm (i.e., in diag(τ )), capturing the delivery time of the sectors reached

by these paths. However, the total contribution of these sectors extends beyond this term, as

additional rounds of production take place after reaching intermediate sector m. Term (a) captures

these subsequent steps by representing the total (weighted) number of walks of any length k from

intermediate sector m to any other final sector. This term is then multiplied by Ω one final time,

reflecting the fact that the time-to-build affects the average duration Tw only after completing a

full round of production.

5A walk of length p is any sequence of sectors (n0, n1, . . . , np) such that ωnk+1nk
> 0 for all k = 0, . . . , p−1. Edges

and nodes can be repeated.
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Notes: Monthly time-to-build from Compustat. We use w = ζ as weighting vector to capture the welfare relevant
impact of the shock.

Figure 2: Distribution of average durations Tw (δn) across sectors

Figure 2 compares the cross-sectoral distributions of the average durations Tw (δn) in different

models. For mere comparison, we include the roundabout economy in which the average duration

statistics is strictly 0. More interestingly, the figure compares the distribution in the LP83 model

with the one implied under heterogeneous time-to-build (T2B). While time-to-build is uniform and

equal to 1 in the LP83, the model displays some heterogeneity in the persistence of sectoral shocks

because of the structure of the production network. The overall persistence is, however, low and

most sectors have an average duration close to 0. Our model exhibits significantly more propagation

because certain sectors add substantial lags in production.

Figure 12 in the Appendix shows the top-20 sectors with the longest average duration. Sectoral

shocks to “Electric power generation (...)” display the largest persistence with an average duration

of 0.74 months (0.11 in LP83). Ignoring variation in time-to-build can thus lead to substantially

underestimate the persistence of shocks.

4.2 Delay Shocks

Our model allows us to analyze the impact of delay shocks. We model these shocks as the delayed

arrival of goods scheduled for delivery at a given point in time to a later date. We assume for
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simplicity that these shocks are unanticipated.6 Specifically, we model a T -period delay shock to

sector n as the revelation at time 0 that a fraction ε of the stocks Xnτ for τ = 0, . . . , T − 1 will

only arrive T periods later. In other words, at t = 0 and T ≤ τn/2,

X̂nτ = −ε for τ = 0, . . . , T − 1

= +ε for τ = T, . . . , 2T − 1.

Figure 3 displays the response of real GDP (yt =
∑

n pnαnynt) in response to delay shocks of periods

T = 1 month and 3 months to two different sectors. The top two panels show the response of delays

in the sector “Nonferrous metal (...)”, whose time-to-build is 3 months (Compustat). The bottom

two panels display the impact of delays in the sector “Plastics material (...)”, whose time-to-build

is 5 months.

#331410 - Nonferrous metal smelting and refining (τn = 3 months)

(a) 1 month
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#325211 - Plastics material and resin manufacturing (τn = 5 months)

(c) 1 month
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Notes: Monthly time-to-build from Compustat. Time unit is a month. ε = −1

Figure 3: Aggregate GDP response to delay shocks in various sectors (T = 1 and 3 months)

6This assumption is relatively innocuous in our log-linear setup in which consumption and intermediate shares are
fixed and anticipation effects play no role. See, for instance, the fact that uncertainty about TFP does not affect the
allocation in Proposition 1.
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Several patterns can be noted from those graphs. First, as highlighted in the previous subsection,

the persistence of the shocks substantially differ depending on which sector is hit. Because of its

particular location in the network, delay shocks to sector #331410 (“Nonferrous metal (...)”) in

the top panels trigger a much more protracted response of the economy despite having a lower

time-to-build. Short delay shocks can produce oscillations, as observed in panels (a) and (c), while

longer duration delays seem to generate a smoother response. This pattern of oscillations results

from two effects. It is partly due to the fact that delay shocks are by construction the combination

of a negative supply shock followed by a rebound. Another deeper reason is a phenomenon of

echo brought about by the production network, particularly present in panel (a). In that case,

we observe that the initial drop in production due to a fall in inputs is repeatedly seen at regular

intervals equal to the 3 months of time-to-build for that sector. This is not necessarily true for all

sectors, and we explore this phenomenon further and identify its source in the next section.

4.3 Bottlenecks

In which sectors would delays significantly hinder economic activity? To answer this question, we

leverage our average duration statistic to identify bottlenecks: sectors in which a permanent increase

in time-to-build τn would contribute the most to the propagation of shocks.

To identify bottleneck sectors, we compute the marginal impact of a permanent delay ∂τn on

the average duration measure Tw, that is, we evaluate ∂Tw

(

Â
)

/∂τn for a given shock Â and a

given weighting vector w. Proposition 3 shows that this marginal impact is the product of some

appropriately weighted measures of the sector’s supplier and buyer centralities.

Proposition 3. The marginal impact of a delay shock ∂τn on the persistence of shock Â is given

by the product of supplier and buyer centrality measures:

∂Tw

(

Â
)

/∂τn = sn × bn,

where bn = Â′ (I−Ω′)
−1

δn is a shock Â-weighted measure of sector n’s buyer centrality, and sn =

w̃′ (I−Ω)−1 δn is a vector w̃-weighted measure of sector n’s supplier centrality, where w̃ = Ω′w.

Measures sn and bn can be interpreted as weighted centrality measures. The supplier central-

ity measure sn is the more common expression. Expanding the Leontief inverse, sn can also be

expressed as

sn = w̃′
∞∑

k=0

Ωkδn,

which is sum of all walks of length k from n to any other downstream sector, weighted by the product

of input shares along the path, and aggregated across sectors with vector w̃. This weighting vector

w̃ = Ω′w reflects both the particular weighting vector w chosen for the statistic Tw and the fact
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that a sector’s time-to-build τn contributes to the average duration statistics after one round of the

production network. As a result, if w is the weighting of sectors at the final stage of production,

w̃ = Ω′w captures the implied weighting of sectors one round before the final stage of production.

Measure bn can be similarly interpreted but as a buyer centrality measure, because it is com-

puted using Ω′ instead of Ω (i.e., upstream rather than downstream). Expanding the Leontief

inverse, we obtain

bn = Â′
∞∑

k=0

(
Ω′
)k

δn.

As the expression illustrates, bn corresponds to the sum of all walks from any upstream sector m,

weighted by the impact of the shock Âm, to sector n. In other words, sectors with a high value for

bn are sectors that are downstream to many other sectors hit by the shock Â.

Taking stock, Proposition 3 indicates that bottlenecks are sectors that are central to the pro-

duction network, both as buyers and suppliers. This result stands in contrast to the Domar weights

ζ which reflect the importance of sectors as suppliers only.

Figure 13 in the Appendix displays the 20 largest bottleneck sectors in the U.S. economy in

response to an aggregate shock. According to our definition, the most important bottlenecks are

the metallurgy sectors (“Iron and steel mills (...) ” and “Nonferrous metals (...)”) and plastic

production (“Plastics material (...)”). These bottleneck measures provide a different view of the

economy than what the Domar weights suggest (Figure 11 in the Appendix).

5 Echoes and Cycles

Beyond persistence, we demonstrate in this section that the introduction of time-to-build in pro-

duction networks generates rich dynamics. As demonstrated in the previous section, oscillations in

response to shocks appear to be widespread once time-to-build is incorporated. In this section, we

examine this phenomenon and attempt to quantify it.

5.1 Eigenvalue Spectrum

To study the emergence of oscillations, we first examine the spectrum of the dynamic system (12).

For that purpose, it is useful to turn the V AR (τmax) system into the following V AR (1):

Yt = OYt−1 + et, (17)
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where

Yt =
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The dynamic system governing output dynamics features oscillation when the large companion ma-

trix O admits complex eigenvalues. Note that oscillations can appear in both the LP83 model and

in our model with heterogeneous time-to-build, but are ruled out by construction in the roundabout

economy unless the productivity process itself implies a particular pattern of serial correlations.

With roundabout production and serially uncorrelated shocks, productivity disturbances are re-

solved within period and cannot give rise to cyclical dynamics (see equation (13) in Section 3).

(a) LP83
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(b) Heterogeneous T2B
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Notes: The figure displays the eigenvalue spectrum of matrix O in the complex plane in both the LP83 (left) and in the model with heterogeneous
time-to-build (right). Both models are computed at the monthly frequency with Compustat data.

Figure 4: Eigenvalue spectrum of matrix O

Figure 4 displays the eigenvalue spectrum of both the LP83 and our model. Several key insights

can be inferred from the graph. First, because of the assumption of constant returns to scale, the

rows of matrix O sum up to less than 1, ensuring that all the eigenvalues lie within the unit circle.

Second, the comparison between the two models reveals strikingly different dynamic behaviors. In

the LP83 model (left panel), eigenvalues are relatively small due to the assumption of a delivery time
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uniformly set to one period. As a result, shocks dissipate quickly. The model’s cyclical behavior

is also minimal: most eigenvalues cluster near the real axis, with only a few exhibiting a nonzero

imaginary part.

In contrast, the heterogeneous time-to-build model (right panel) presents a markedly different

picture. With significantly longer delivery times (up to 2-3 years for some sectors), shocks persist

over a much longer horizon, so the eigenvalues exhibit noticeably larger norms. Additionally, the

spectrum reveals a richer cyclical structure with oscillations across a wide range of frequencies. The

right panel of Figure 14 in the Appendix further illustrates this with a histogram of the frequencies.

The model notably features peaks in angular frequencies of π/3, 2π/3 and π (that is, oscillations

with periods 6, 3 and 2 months). Understanding the reasons behind these remarkably different

behaviors is what we turn to now.

5.2 Fourier Decomposition: a Refresher

What explains the rich dynamic behavior of the heterogeneous time-to-build model? Why are

peaks at certain frequencies observed? Can the structure of the production network account for

these patterns?

To address these questions, we turn to the model’s Fourier spectrum. Like the eigenvalue

spectrum, Fourier analysis offers a decomposition of the model’s dynamics into cyclical components

using sines and cosines. However, Fourier analysis bypasses the need to explicitly compute the

model’s eigenvalues—a task that cannot be done analytically for a general input-output matrix.

Following Hamilton (2020), any discrete-time 0-mean stationary process yt can be represented

as

yt =

∫ π

−π

δ (ω) eiωtdω,

where E [δ (ω)] = 0 and E [δ (ω) δ (ω′)] = 0 for ω 6= ω′. Function δ (ω) is a (complex-valued) random

variable that we refer to as the discrete time Fourier transform (DTFT) of process yt. It can be

derived from the expression

δ (ω) =
1

2π

∞∑

t=−∞

yte
−iωt.

Of particular interest is the spectral density function, defined as f (ω) = E
[

δ (ω) δ (ω)
]

, which

captures how much a certain process yt loads onto a certain frequency ω. Lastly, it is also useful to

introduce the autocorrelation function (ACF) γk = E [ytyt−k] for k = −∞, . . . ,∞. A key property

that we use extensively is that the spectral density f is the DTFT of the ACF, i.e.,

f (ω) =
1

2π

∞∑

k=−∞

γke
−iωk. (18)
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To compute the Fourier spectrum of a given sector n, we calculate the sector’s ACF γk (n) =

E [ŷntŷn,t−k]. This can be done analytically in our context because the economy is governed by the

simple VAR(1) process (17). According to Lütkepohl (2005), the autocovariance matrix function

(ACMF) Γk = E
[
YtY

′
t−k

]
is given by

Γ0 =

∞∑

k=0

OkΣ
(
O′
)k

and Γk = OkΓ0, k > 0, (19)

where Σ = E [ete
′
t] is the variance-covariance matrix of the productivity shocks.

5.3 Network Cycles

Although equation (19) offers an expression that can be readily used to compute the autocorrelation

function and the Fourier spectrum for any sector in the economy, the expression remains relatively

abstract and does not provide deeper insights into how the structure of the production network

shape the economy’s cyclical behavior.

Rather than pursuing this route, we note that any serial correlation for a given sector i must

arise from the existence of cycles in the network. That is, the existence of walks from sector i

to itself, either directed or undirected. Figure 5 illustrates these two cases. Panel (a) depicts the

hypothetical existence of a directed cycle of length p from sector n to itself, i.e., a sequence of

nodes (n = n0, n1, . . . , np−1, n0) connected by arrows that indicate nonzero flows of intermediate

inputs between the sectors. Such a cycle naturally leads to serial correlation as shocks that hit

sector n travel along the path and reappear
∑p−1

k=0 τnk
periods later. Serial correlation can also

(a) Directed cycle

n

n1np−1

...

(b) Undirected cycle

m

m′
1

m1

... ...

mp−1 m′
p′−1

n

length p′length p

Figure 5: Serial Correlation and Cycles

arise in the presence of undirected cycles, depicted in panel (b). The graph describes a hypothetical
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situation in which sector m is connected to sector n by two paths: a walk of length p on the left

(m = m0,m1, . . . ,mp = n) and a walk of length p’ on the right
(

m = m0,m
′
1, . . . ,m

′
p′ = n

)

. The

arrows indicate the flow of intermediate goods from sector m to sector n along the two paths and

point towards opposite directions when reaching sector i. In that sense, the union of the two paths

does not form a proper cycle in the directed graph associated to the production network, but it

does in the associated undirected graph (i.e., ignoring the arrows’ directions). Such an undirected

cycles can create serial correlation in sector n: shocks that hit sector m travel along the two paths

and appear T =
∑p−1

k=0 τmk
periods later in sector n from the path on the left and T ′ =

∑p′−1
k=0 τm′

k

periods later from the path on the right. In other words, sector n can display serial correlation at

the lag |T − T ′|.

We focus our analysis on the directed cycles. We will show later that these directed cycles

account for virtually all the ACF and Fourier spectrum of the economy. For a given directed

cycle ς = (n0, n1, . . . , np−1, np = n0), we define the cycle’s length l (ς) = p the number of edges

crossed, its duration τ (ς) =
∑p−1

k=0 τnk
and weight w (ς) =

∏p−1
k=0 ωnk+1nk

. In the case of i.i.d.

productivity shocks, the ACF of a given sector consists of positive terms, among which we can

isolate the contribution of a specific cycle. Figure 15 in the Appendix illustrates the propagation of

shocks through a cycle ς. Shocks reaching sector n0 at time t—this includes Ân0t and other shocks

originated upstream in the past—travel along the cycle and appear τn0 periods later in sector n1,

scaled by ωn1n0 . The process continues with shocks propagating to sector n2 after an additional

τn1 periods, multiplied by ωn2n1 and so forth. Ultimately, the shocks return to sector n0 after a

total number of periods τ (ς), scaled by the weight w (ς) . From this, we derive a lower bound7

for the contribution of cycle ς to the ACF and to the Fourier spectrum of sector i0, formalized in

Proposition 4.

Proposition 4. If productivity shocks are i.i.d., a p−cycle ς = (n0, n1, . . . , np−1, np = n0) con-

tributes (at least) to the ACF of sector n0:

γkτ(ς) (n0) = w (ς)|k| σ2 (ŷn0t) (20)

for k ∈ N and to the Fourier spectrum

fn0 (ω) =
σ2 (ŷn0t)

2π

1− w (ς)2

1 + w (ς)2 − 2w (ς) cos (ωτ (ς))
, (21)

where σ (ŷn0,t) is the standard deviation of ŷn0t, τ (ς) is the duration and w (ς) the weight of cycle

ς.

7This lower bound represents the contribution of cycle ς in isolation of the rest of the network. If cycle ς intersects
with other cycles, additional positive terms may appear in the ACF, meaning that (20) provides only a lower estimate
of the total contribution of cycle ς. We show later that this lower bound accounts for virtually all the serial correlation
using the U.S. input-output matrix from the BEA.
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Proposition 4 demonstrates that directed cycles imply a particular lagged structure in the ACF,

characterized by peaks at multiples of the cycle’s duration τ and a dampening effect determined

by the weight w. Consequently, this lag structure in the ACF gives rise to distinct peaks in the

frequency domain. Figure 6 provides an example with the Fourier spectrum (21) of a cycle of

duration τ = 3 with varying weights (w = 0.25, 0.5, and 0.75). As shown, a network cycle of length

3 produces peaks at corresponding angular frequencies—multiples of 2π/3. The spectrum is rather

diffuse for low values of the weight but the peaks become increasingly pronounced as the weight

grows. In essence, the network’s topology determines the Fourier spectrum of a sector, while the

Fourier spectrum, in turn, reveals the underlying cyclical composition of the network.

-2 /3 0 2 /3
0

0.5

1

1.5

2

f(
)

Figure 6: Spectrum of a cycle of duration τ = 3 for different weights

5.4 Counting Cycles

Having established their significance in shaping the economy’s cyclical behavior, we parse the

network in an attempt to identify its cycles, recording their durations and weights. Detecting

cycles in a graph is a highly combinatorial problem, making brute-force enumeration feasible only

for short cycles (i.e., those involving 2 or 3 nodes, given standard computing power and the BEA’s

input-output network). For longer cycles, we employ a population of crawlers that travel the

network at random, recording cycles whenever they are encountered. While this approach does

not guarantee a complete enumeration of all cycles, it proves sufficient for our purposes, as we will

demonstrate later.

Table 1 presents the highest-weight cycles in the network. Our network exploration reveals an

abundance of self-cycles with substantial weights.8 The number of cycles of length greater than 2

is even larger, but they tend to carry lower weights.

8This reflects the fact that the diagonal in the U.S. input-output matrix is large. We must remain cautious
interpreting those as actual cycles in production because they can be an artifact of aggregation. Figure 16 in the
appendix provides an example of how aggregation can lead to the emergence of false self-loops.
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Weight Duration Sectors

Length 1

0.43 3 #331410 – Nonferrous metal (except alum.) smelting and refining

0.41 6 #1121A0 – Beef cattle ranching and farming (...)

0.39 6 #312140 – Distilleries

Length ≥2

0.03 3 #325110 – Petrochemical manufacturing

#325190 – Other basic organic chemical manufacturing

0.01 14 #336310 – Motor vehicle gasoline engine and engine parts (...)

#333618 – Other engine equipment manufacturing

0.01 8 #322130 – Paperboard mills

#322210 – Paperboard container manufacturing

Notes: Input-output network from the BEA and time-to-build from Compustat. Duration in months.

Table 1: Top-3 cycles by weight and length

Figure 7 presents various statistics regarding the cycles that we identify in the U.S. input-

output matrix. Panel (a) presents the number of cycles as a function of their length. The exact

counts of cycles of lengths 1 (self-cycles) and 2 are indicated in orange, while cycles detected using

crawlers appear in blue. Since our search method is not exhaustive for cycles of length greater than

2, their count is significantly lower—though this has minimal impact, as these cycles carry small

weights and contribute little to the overall Fourier spectrum, as we demonstrate later. Panel (b)

shows the same distribution but weighted. In the LP83 model, where delivery times are restricted

to 1, cycle lengths and durations coincide. The figure reveals that cycles of length 1 dominate,

while longer cycles are nearly negligible, explaining the LP83 model’s lack of cyclical behavior, as

evidenced in its eigenvalue spectrum (4). Panel (c) and (d) display the unweighted and weighted

distributions of cycle durations, respectively. The results confirm the presence of a diverse range

of cycles of varying durations, supporting the rich eigenvalue spectrum observed in the model with

heterogeneous time-to-build. Notably, panel (d) highlights distinct peaks for cycles of duration 3

and 6 months (and, to a lesser extent, 2 months), aligning with the frequency peaks seen in the

eigenvalue spectrum of Figure 14 in the appendix.

These findings support the crucial role of network cycles in shaping the economy’s cyclical

dynamics.

5.5 From Network Cycles to Business Cycles

Having identified the primary directed cycles within the production network, we now assess to what

extent those cycles can account for the Fourier spectrum of each sector. To do this, we enumerate

all the cycles a sector belongs to and sum up their contributions, captured by equation (20), to the
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(a) By length (b) By length (weighted)

(c) By duration (d) By duration (weighted)

Notes: Input-output network from the BEA and time-to-build from Compustat. This figure was produced by brute force for cycles of length
(number of edges crossed) ≤ 2 and 250 crawlers for higher lengths. Panel (c) shows the distribution of the cycle durations τ (ς) using w (ς) as
weights.

Figure 7: Network cycle statistics

sector’s ACF. Because our search of cycles is not exhaustive and that equation (20) is only a lower

bound on a cycle’s contribution, we anticipate explaining only a fraction of the full ACF, which we

compute using (19).

Surprisingly, the directed cycles account for nearly the entire ACF : we obtain an astonishing

R2 of 0.9996 across sectors and over a 5-year horizon. Figure 8 provides two illustrative examples

that highlight the explanatory power of the directed cycles. The graph compares over multiple lags

the full ACF to the one derived solely from the directed cycles. Panel (a) depicts sector #331410

(“Nonferrous metal (...)”), which is part of the largest self-cycle we identify. The ACF exhibits

peaks at 3-month intervals, directly reflecting the main cycle’s duration. Panel (b) presents another

example with sector #1121A0 (“Beef cattle ranching and farming (...)”). This sector belongs to

the second most important cycle reported in Table 1 with 0.41 and duration 6 month. As predicted
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by the cycle, the ACF displays declining peaks at regular intervals of 6 months.

(a) Nonferrous metal (b) Beef cattle ranching and farming (...)

Figure 8: Examples of ACF: full vs. directed cycle-only

Due to the equivalence between the ACF and the Fourier spectrum, the production network’s

directed cycles also determine the model-implied Fourier decomposition of the economy’s sectors.

Figure 9 illustrates the Fourier spectrum for the two previously analyzed sectors, presented both

in terms of angular frequency (top panels) and oscillation period (bottom panels). In both cases,

the duration of the dominant cycles (3 and 6 months respectively) are prominently reflected in

the Fourier spectrum. We note further that panel (b) exhibits peaks located at integer divisors of

the primary cycle’s 6-months period (i.e., at 2 and 3 months, corresponding to angular frequencies

ω = π or 2π/3). This property is a fundamental characteristic of the system we study, arising from

the specific structure of the ACF (20), and captured by the Fourier spectrum (21).9

6 Sectoral Comovements and Aggregation

Our analysis has so far primarily examined the dynamics of individual sectors. In this section, we

broaden our scope to explore how heterogeneous time-to-build gives rise to complex cross-sectoral

comovements. We examine afterwards the implications of both sector-specific and cross-sectoral

dynamics for GDP fluctuations.

6.1 Multi-sector IRFs

We begin our analysis of dynamic sectoral comovements by examining multi-sector impulse re-

sponses (IRFs) to sectoral shocks. Figure 17 in the appendix displays the response over time of all

9In the presence of a cycle of duration τ , the ACF is 0 everywhere except at multiples of τ . Computing the
Fourier spectrum of the sectors involved in the cycle is thus equivalent to calculating the Fourier transform of a signal
sampled at discrete τ intervals, which cannot distinguish between the base frequency τ and its harmonics (i.e., integer
multiples).
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(a) Nonferrous metal (...)
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Notes: The top panels display the Fourier spectrum fn as a function of angular frequency ω and the bottom panels as a function of

the period T = 2π/ω.

Figure 9: Examples of Fourier spectra

sectors to a positive 1% productivity shock to sector #334110 (“Petroleum Refineries”). The mag-

nitude of the impact is indicated by the size and darkness of the dots. The right panel summarizes

the broad cross-sectoral impact of the shock by showing a weighted histogram of the cumulative

sectoral response. The bottom panel displays the response of real GDP in percentage terms, which

we define as total value added in constant steady-state prices: yt =
∑

n pnαnynt.

Sector #334110 has a high Domar weight and is a key supplier to many industries. This is

reflected in the histogram’s widespread impact across the economy. Following the initial shock at

t = 0, direct customers of sector #334110 experience effects after a two-month delivery lag. The

shock then propagates further downstream, affecting subsequent buyers in the supply chain. While

sector #334110 is not itself part of an important cycle, some of its downstream buyers are. As the

shock spreads throughout the economy, it triggers cyclical fluctuations in downstream sectors that

belong to cycles. Notably, we observe a recurring 6-month cycle in multiple sectors, which also

manifests itself in GDP fluctuations at regular intervals (t = 2, 8, 14, . . .).

Figure 18, also in the appendix, provides another example, this time focusing on a sector that

belongs to a large cycle: sector #331410 (“Nonferrous metal (...)”). As previously noted, this

sector belongs to a self-cycle with a 3-month duration. As expected, a distinct 3-month cyclical

pattern emerges—not only in sector #331410 but also in all its immediate buyers. The pattern

is clearly visible in GDP (t = 3, 6, 9, . . .). This observation highlights an important insight: the
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cyclical patterns produced by the network’s cycles are not only observed within the directly involved

sectors but also in the downstream sectors, ultimately shaping aggregate economic dynamics.

These examples illustrate the complex dynamic comovements that arise as a result of input-

output linkages and time-to-build. These dynamics confirm the importance of the network’s cycles

but also suggest an important role for the particular structure of the input-output relationships

that connect those cycles to their downstream partners.

6.2 Dominant walks

How does the structure of the network shape the comovements across sectors?

Equation (19) can be used to compute the correlation across sectors at any lag. But as we

previously argued, this expression provides little insight into the role of the network structure

behind those dynamic comovements.

Consider instead the MA representation of sector n’s output:

ŷnt = Ânt +
∑

m

ωnmŷm,t−τm = Ânt +
∑

m

ωnmÂm,t−τm +
∑

m

∑

l

ωnmωmlÂl,t−τm−τl + . . . (22)

Extending the notation we previously introduced for cycles, define for a walk ς = (n0, . . . , np) its

length l (ς) = p, its duration τ (ς) =
∑p−1

k=0 τnk
and weight w (ς) =

∏p−1
k=0 ωnk+1nk

. Let us also denote

Pτ (n,m) the set of all the walks of duration τ from sector n to m in the production network and

P (n,m) = ∪τ≥0Pτ (n,m). Then, equation (22) can be rewritten as

ŷnt = Ânt +
∑

m

∑

ς∈P(m,n)

w (ς) Âm,t−τ(ς). (23)

Using this MA notation and maintaining the assumption of i.i.d shocks, it now becomes possible

to write the contemporaneous correlation across sectors as

E [ŷntŷmt] = [Γ0]nm =

∞∑

τ=0

N∑

k=1

∑

ςk→n ∈ Pτ (k, n)

ςk→m ∈ Pτ (k,m)

w (ςk→n)w (ςk→m)σ2
(

Âk

)

. (24)

In other words, equation (24) shows that two sectors n and m can be correlated at time t if a shock

to another sector k at time t− τ is propagated through a walk from k to n and a walk from k to

m of equal lengths τ .
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We can similarly compute the lagged cross-sectoral correlation

E [ŷntŷmt−l] = [Γl]nm =
∞∑

τ=0

N∑

k=1

∑

ςk→n ∈ Pτ+l (k, n)

ςk→m ∈ Pτ (k,m)

w (ςk→n)w (ςk→m)σ2
(

Âk

)

. (25)

Intuitively, sector n at time t can be correlated with sector m at time t − l if a shock to another

sector k at time t − (τ + l) is propagated through a walk from k to n of length τ + l and a walk

from k to m of length τ .

Echoing our decomposition of sectoral dynamics into dominant cycles, equations (24) and (25)

show that the comovement between any two sectors at any lag can be decomposed as the sum of

dominant walks.

6.3 Aggregation

After studying the dynamics of individual sectors and cross-sectoral comovements, we turn to the

implications of input-output linkages and heterogenous time-to-build on GDP.

We consider aggregate real value added in constant steady-state prices yt =
∑

αnpnynt. In log

deviations from steady state, GDP is given by ŷt =
∑N

n=1 µnŷnt where µn = αnpnyn/
∑

m αmpmym.

To evaluate its Fourier spectrum, we proceed as before by computing the ACF:

E [ŷtŷt−k] = E
[
µ′ŷtŷt−kµ

]
= µ′Γkµ, (26)

where Γk is the ACMF of the entire vector of sectoral outputs, as defined in (19). Expression

(26) highlights the dependence of the GDP’s autocorrelation function on the ACMF of the entire

system. Using this expression, we may now evaluate the density spectrum of GDP.

Proposition 5. The Fourier spectrum of aggregate real GDP is given by

fy (ω) =

N∑

n=1

µ2
nfn (ω) +

1

2π

∑

n 6=m

∞∑

k=−∞

µnµm [Γk]nm e−iωk. (27)

Proposition 5 shows that the spectrum of GDP can be decomposed into two terms. The first key

insight is that sectoral cycles—shaped by the network topology and the existence of cycles—survive

aggregation. The first term
(
∑N

n=1 µ
2
nfn (ω)

)

represents a weighted sum of each sector’s individual

density spectrum, which, as previously discussed, is mainly driven by the dominant cycles of the

production network. The second term
(
∑

n 6=m

∑∞
k=−∞ µnµm [Γk]nm e−iωk

)

emphasizes the role of

cross-sectoral comovements in shaping GDP fluctuations. Since GDP is a weighted sum of sectoral

outputs, comovements across sectors are a source of serial correlation in GDP. As noted in the
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previous section, this component can also be decomposed into the network’s dominant walks across

sectors.

To illustrate how these various components shape the dynamics of GDP, Figure 10 displays its

full model-implied spectrum (in black), along with the contribution of the each sector’s individual

spectrum (in blue).

(a) Spectrum of Real GDP
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• Duration 2 cycles

– #5241XX (self)

∗ Insurance carriers (...)

– #324110 (self)

∗ Petroleum refineries

• Duration 3 cycles

– #315000-#721000

∗ Insurance carriers (...)

∗ Accomodation

– #326190 - #5241XX

∗ Other plastics product (...)

∗ Insurance carriers

• Duration 6 cycles

– #211000 (self)

∗ Oil and gas extraction

– #52A000 (self)

∗ Monetary authorities (...)

Notes: Input-output network from the BEA and time-to-build from Compustat. The left vertical axis in the top left panel corresponds to the
full spectrum and the right vertical axis to the one implied by the sectoral spectra. The top left panel shows the spectrum in terms of angular
frequency, the lower left panel shows the spectrum in period T = 2π/ω.

Figure 10: Spectrum of Real GDP

The top left panel shows that the sum of each sector’s spectrum aligns closely with the full

spectrum when the right axis is appropriately scaled. We find that this component accounts

for approximately one half of the full spectrum, with the remaining variation explained by the

comovement term. Notably, the frequency peaks are accurately identified, allowing to trace them

back to the network’s cycles. Consistent with our earlier findings on the eigenvalue spectrum

(Figure 14 in the appendix), we observe distinct peaks corresponding to cycles of durations 2,

3 and 6 months. The right panel indicates the network cycles that contribute the most to the

observed peaks at those durations according to our decomposition.
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In conclusion, heterogeneous time-to-build generates complex dynamics in production network

economies, both at the sectoral and aggregate levels. Our results underscore the critical role of

network topology—particularly its dominant cycles and paths—in shaping aggregate dynamics.

7 Quantitative Application

Under construction.

8 Conclusion

In this paper, we examine how heterogeneous time-to-build affects sectoral and aggregate dynamics

in a production network economy. We show that time-to-build significantly contributes to the per-

sistence of shocks, with highly heterogeneous effects across sectors. We further analyze the impact

of delay shocks across sectors and characterize bottlenecks—sectors in which delays substantially

hinder economic activity. Our results show that bottlenecks can be characterized by the product

of the sector’s buyer and supplier centralities.

The introduction of heterogeneous time-to-build generates complex sectoral and aggregate dy-

namics. We demonstrate that endogenous fluctuations arise due to cycles in the network (both

directed and undirected). Our findings show that the Fourier spectrum of a sector’s output can

be predicted by the weights and durations of the network cycles it belongs to. Sectoral comove-

ments are similarly intricate and can be decomposed into the network’s dominant paths. Finally,

we establish that these sectoral fluctuations survive in the aggregate and characterize the Fourier

spectrum of aggregate GDP as a function of the production network’s dominant cycles and walks.

Our framework is intentionally simple and frictionless. In future research, we plan to investigate

how departures from our baseline log-linear model affect the propagation of shocks. We would like

to consider in particular how the introduction of inventories could further dampen or amplify

economic fluctuations. Another promising avenue would be to investigate how time-to-build affects

the timing of price adjustments in models with price rigidities.
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A Additional Figures

Notes: Monthly time-to-build from Compustat. Consumption spending shares from the BEA, β = 0.96
1
12 .

Figure 11: Top-20 Domar weights ζ
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Notes: Monthly time-to-build from Compustat. We use w = ζ as weighting vector.

Figure 12: Top-20 sectors with largest average duration Tw (δi) (Compustat)

Notes: Monthly time-to-build from Compustat. We use weighting vector w = ζ and aggregate shock Â = 1.

Figure 13: Top-20 largest bottleneck sectors to aggregate shocks
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(a) Spectrum (T2B Compustat)
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(b) Angular Frequency ω
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Notes: The left panel displays the eigenvalue spectrum of matrix O in the complex plane for the model with heterogeneous time-to-build, computed
at the monthly frequency with Compustat data. The right panel shows the angular frequency distribution of those eigenvalues in radian, weighted
by their norms.

Figure 14: Eigenvalue spectrum and angular frequency distribution

n0

n1np−1

...

×ωn1n0

×ωn2n1

×ωn0np−1

×ωnp−1np−2

+τn0

+τn1+τnp−1

+τnp

Figure 15: Propagation of shocks in a directed cycle
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j

i

i + j
aggregation

Notes: In this example, there are two sectors organized in a purely downstream production network without cycles. In this hypothetical situation,
sector j buys intermediate inputs from sector i but sector i does not buy anything from sector j. If sectors i and j were to be aggregated in the
same sector, the input-output matrix would indicate a self-loop for the joint sector i + j, falsely indicating the existence of a directed cycle in
production and leading to erroneous conclusions for the cyclical properties of the economy.

Figure 16: Aggregation bias

Notes: Shock normalized to 1%. Initial shock to sector 225 indicated in red at t = 0. The magnitude of the impact in each sector is represented

by the size and darkness of the dot. We use a logarithmic color scale to highlight the propagation of the shock. The x-axis represents time in

months, the y-axis corresponds to an internal sectoral index for the 372 sectors that we consider. The right panel is a weighted histogram of the

cumulated impact of the shock in each sector. The bottom panel displays the response of aggregate GDP in percentage terms.

Figure 17: Sector #334110 - Petroleum Refineries
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Notes: Shock normalized to 1%. Initial shock to sector 47 indicated in red at t = 0. The magnitude of the impact in each sector is represented by

the size and darkness of the dot. We use a logarithmic color scale to highlight the propagation of the shock. The x-axis represents time in months,

the y-axis corresponds to an internal sectoral index for the 372 sectors that we consider. The right panel is a weighted histogram of the cumulated

impact of the shock in each sector. The bottom panel displays the response of aggregate GDP in percentage terms.

Figure 18: Sector #331410 - Nonferrous metal (...)
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B Proofs

Proposition 1. Under assumptions (6) and (7), the planner’s value function can be expressed as

V
(

{An}
N
n=1 , {X1τ}

τ1−1
τ=0 , . . .

)

=

N∑

n=1

τn−1∑

τ=0

βτ ζn logXnτ +G
(

{An}
N
n=1

)

+ κ

where

ζ =
(
I− [Ωdiag (βτ )]

′
)−1

γ (28)

G
(

{An}
N

n=1

)

=
∑

n

βτnζn logAn + βE
[

G
(

{A′

n}
N

n=1

)]

(29)

and the allocation satisfies

cn = cnXn0

xnm = xnmXno

ln = ln,

where

cn = γn/ζn

xnm = ωnmβτnζn/ζm

ln = αnβ
τnζn/

(
∑

m

αmβτmζm

)

κ =(1− β)
−1

(
∑

n

γn log cn +
∑

n

βτnζn log l
αn

n

∏

m

xωnm

nm

)

. (30)

Proof. Derive the first-order conditions of the planning problem. Write the Lagrangian as

L =
∑

n

γn log cn+
∑

n

pn

(

Xn0 − cn −
∑

m

xmn

)

+w
(

1−
∑

ln

)

+βE
[

V
({

A′
n

}N

n=1
,
{
X ′

1τ

}τ1−1

τ=0
, . . .

)]

,

where pn is the Lagrange multiplier on good n’s resource constraint (equal to the spot price of

good n for immediate delivery in the decentralization) and w the multiplier on the time constraint

(equal to the wage in the decentralization). The first order conditions are

[cn]
γn
cn

= pn (31)

[xnm] pm = ωnm
yn
xnm

βE

[
∂V

∂Xn,τn−1

({
A′

n

}N

n=1
,
{
X ′

1τ

}τ1−1

τ=0
, . . .

)]

(32)

[ln] w = αn
yn
ln

βE

[
∂V

∂Xn,τn−1

({
A′

n

}N

i=1
,
{
X ′

1τ

}τ1−1

τ=0
, . . .

)]

(33)
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Taking the envelope condition over each state variable gives

[Xn0]
∂V

∂Xn0
= pn (34)

[Xnτ , τ > 0]
∂V

∂Xnτ
= βE

[
∂V

∂Xn,τ−1

({
A′

n

}N

n=1
,
{
X ′

1τ

}τ1−1

τ=0
, . . .

)]

(35)

We now proceed by guess and verify. Guess that the value function takes the form

V
(

{An}
N
n=1 , {X1τ}

τ1−1
τ=0 , . . .

)

=
∑

n

τn−1∑

τ=0

ζnτ logXnτ +G
(

{An}
N
i=1

)

+ κ, (36)

where ζnτ and κ are some unknowns and F some function to be determined later. With our guess,

the envelope conditions (34) and (35) give

∂V

∂Xn0
=

ζn0
Xn0

= pn (37)

∂V

∂Xnτ
=

ζnτ
Xnτ

= βE

[
ζnτ−1

Xnτ

]

⇒ ζnτ = βζnτ−1 for τ ≥ 1. (38)

Simplify the notation by introducing ζn ≡ ζn0. Given condition (38), we have ζnτ = βτζn.

We now guess that consumption and intermediate inputs evolve in proportion to the aggregate

stock of goods delivered today, that is,

cn = cnXn0

xnm = xnmXno

and that labor is fixed ln = ln. Combining our guess with (31) and (37), we get

ζn
Xn0

= pn =
γn
cn

=
γn

cnXn0
⇒ cn =

γn
ζn

.

Now combining (32) and (38), we get

pm =
ζm
Xm0

= ωnm
yn

xnmXn0
βE

[
ζmτn−1

yn

]

= ωnm
βτnζn

xnmXn0
⇒ xnm = ωnm

βτnζn
ζm

.

Using the condition that cn +
∑

m xmn = 1, we get

γn
ζn

+
∑

m

ωmn
βτmζm
ζn

= 1 ⇒ ζn = γn +
∑

m

ωmnβ
τmζm,

which we write in matrix form as

ζ = γ + [Ωdiag (βτ )]′ ζ (39)
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or in other words, we recognize expression (28): ζ =
(
I− [Ωdiag (βτ )]′

)−1
γ. Because Ω is a

matrix whose rows sum up to less than 1 and that β < 1, the matrix Ω̃ = Ωdiag (βτ ) has radius

strictly less than 1 and I− Ω̃ is invertible. The vector ζ is thus well defined.

The optimality condition on labor gives

w = αn
yn
ln

βE

[

βτn−1 ζn
yn

]

⇒ ln = αnβ
τnζn/w.

Since labor must sum up to 1, derive an expression for the wage

1 =
∑

n

ln =
∑

n

αnβ
τnζn/w ⇒ w =

∑

n

αnβ
τnζn

and employment in sector i is ln = αnβ
τnζn/ (

∑

m αmβτmζm) .

We have thus found solutions for cn, xnm and ln that satisfy our optimality conditions. We are

left to verify that V satisfies the guess (36). We now show that guess (36) satisfies the Bellman

equation after substituting the solutions for cn, xnm and ln.

N∑

1

γn log cn + βE
[

V
({

A′
n

}N

n=1
,
{
X ′

1τ

}τ1−1

τ=0
, . . . ,

{
X ′

Nτ

}τN−1

τ=0

)]

=

N∑

1

γn log cn + βE

[
∑

n

τn−1∑

τ=1

βτ−1ζn logXnτ +
∑

n

βτn−1ζn log yn +G
({

A′
n

}N

n=1

)

+ κ

]

=

N∑

1

γn log cn +
∑

n

βτnζn log yn +
∑

n

τn−1∑

τ=1

βτζn logXnτ + βE
[

G
({

A′
n

}N

n=1

)]

+ βκ

Substitute in the terms cn = cnXn0 and yn = Anl
αn

n

∏

m (xnmXm0)
ωnm , we collect the terms

multiplying Xn0 and identify them with the coefficient ζn:

ζn = γn +
∑

m

βτmωmnζm,

which we recognize as condition (39). Collecting the terms multiplying the TFP terms, we get

G
(

{An}
N
n=1

)

=
∑

n

βτnζn logAn + βE
[

G
({

A′
n

}N

n=1

)]

,

which recovers condition (29). Finally, collecting the terms belonging to the constant, we get

κ =

N∑

1

γn log cn +
∑

n

βτnζn log l
αn

n

∏

m

xωnm
nm + βκ,

which satisfies condition (30). We have thus verified that V satisfies the Bellman equation. Since

37



this equation is a standard contraction that satisfies the Blackwell sufficient condition, the proposed

V is the unique solution.

Lemma 1. The coefficients ζn are equal to the consumption-time adjusted Domar weights,

ζn =
pntynt−τn

V At
,

where V At =
∑

n pntcnt is aggregate value added.

Proof. Consider a particular decentralization of the planning economy. Up to a scalar pt that

determines the nominal price level, each spot price pnt (i.e., for immediate delivery) must be

proportional to pn = ∂V
∂Xn0

, the marginal social value of good n (see proof of Proposition 1):

pnt = ptpn = pt
ζn
Xn0

.

In the decentralization, the household solves every period

max
cn

∑

n

γn log cnt,

subject to the budget constraint
∑

pntcnt = wt. Furthermore, expenditure shares are fixed: pntcnt =

γnwt = γnV At.

Define the consumption-time adjusted Domar weights as

ζ̃n ≡
pntynt−τn

V At
.

Substituting for the resource constraint on good n, we have

ζ̃n =
pnt (cnt +

∑

m xmn,t)

V At
= γn +

pnt
∑

m xmn,t

V At
.

Recall from Proposition 1 that the FOC (32) can be written as

pn = ωmn
ymt

xmn,t
βτm

ζm
ymt

= ωmn
βτmζm
xmn,t

.

Hence,

ζ̃n = γn +
ptpn

∑

m xmn,t

V At

= γn + pt

∑

j ωmnβ
τmζm

V At
.
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We know from Proposition (1) that cnt =
γn
ζn
Xn0 =

γn
ζn
yn,t−τn , hence

V At =
∑

n

pntcnt = pt
∑

n

ζn
ynt−τn

γn
ζn

ynt−τn = pt.

As a result, we obtain that the consumption-time adjusted Domar weight ζ̃n satisfies

ζ̃n = γn +
∑

m

ωmnβ
τmζm,

in which we recognize equation (39). We thus conclude that ζ̃n = ζn.

Proposition 2. The average duration Tw

(

Â
)

for weighting vector w > 0 is

Tw

(

Â
)

= w′Ω (I−Ω)−1
diag (τ ) (I−Ω)−1 Â.

Proof. Consider a shock to a single sector n, Â = δn =
(

0 ... 1 ... 0
)′
. Following the

definition of Tw, we have

Tw (δn) = 0
︸︷︷︸

contemporaneous

impact

+ τn
∑

m

wmωmn

︸ ︷︷ ︸

duration of 1st round

through network

+
∑

m

(τn + τm)
∑

l

wlωlmωmn

︸ ︷︷ ︸

duration of 2nd round

+
∑

m,l

(τn + τm + τl)
∑

k

wkωklωlmωmn

︸ ︷︷ ︸

+...

duration of 3nd round

The average duration can be decomposed as the sum of the durations of all the walks through the

network that start in sector n and end up in any other sector, each walk being weighted by the

corresponding product of input shares (i.e.,
∏l−1

k=0 ωnk+1nk
for the l-length walk (n0, n1..., nl)).

Group the contributions of each round of production:

Tw (δn) =
(∑

m

wmωmn

︸ ︷︷ ︸

2nd round

+
∑

m

∑

l

wlωlmωmn

︸ ︷︷ ︸

3rd round

+ ...
)

τn

} contribution of 1st round

to all further rounds

+
∑

m

(∑

l

wlωlm

︸ ︷︷ ︸

3rd round

+
∑

l

∑

k

wkωklωlm

︸ ︷︷ ︸

4th round

+ ...
)

ωmnτm

} contribution of 2nd round

to all further rounds

+ ...
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which can be rewritten in matrix form as

Tw (δn) = w′
(
Ω+Ω2 + . . .

)
τnδn

+
∑

m

w′
(
Ω+Ω2 + . . .

)
τmωmniδm

+
∑

m,l

w′
(
Ω+Ω2 + . . .

)
τlωlmωmnδl + . . .

= w′Ω (I−Ω)−1



τnδn +
∑

m

τmωmnδm +
∑

m,l

τlωlmωmnδl + . . .





where we have used the Leontief inverse (I−Ω)−1 = I+Ω+Ω2 + . . .. Replace each of the terms

τmδm by diag (τ ) δm and obtain

Tw (δn) = w′Ω (I−Ω)−1 diag (τ )



δn +
∑

m

ωmnδm +
∑

m,l

ωlmωmnδl + . . .



 .

We recognize in the final term in the parenthesis the sum of all weighted walks of any length from

n to any other sector. This can be rewritten as

Tw (δn) = w′Ω (I−Ω)−1 diag (τ )
(
I+Ω+Ω2 + . . .

)
δn

= w′Ω (I−Ω)−1 diag (τ ) (I−Ω)−1 δn.

The general case for a shock Â =
∑

Ânδn follows by linearity.

Proposition 3. The marginal impact of a delay shock ∂τin on the persistence of shock Â is given

by the product of supplier and buyer centrality measures:

∂Tw

(

Â
)

/∂τn = sn × bn,

where bn = Â′ (I−Ω′)
−1

δn is a shock Â-weighted measure of sector n’s buyer centrality, and sn =

w̃′ (I−Ω)−1 δn is a vector w̃-weighted measure of sector n’s supplier centrality, where w̃ = Ω′w.

Proof. The proof is straightforward. Consider the derivative of Tw with respect to τn:

∂Tw
∂τn

(

Â
)

= w′Ω [I−Ω]−1 ∂diag (τ )

∂τn
[I−Ω]−1 Â.

∂diag (τ ) /∂τn is anN×N matrix filled with 0s whose (n, n) th element is 1, hence ∂diag (τ ) /∂τn =
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δnδ
′
n. Hence,

∂Tw
∂τn

(

Â
)

= w′Ω [I−Ω]−1 δnδ
′
n [I−Ω]−1 Â.

Grouping terms, the marginal impact appears as the product of two real numbers:

∂Tw
∂τn

(

Â
)

=
[

w′Ω [I−Ω]−1 δn

]

×
[

δ′n [I−Ω]−1 Â
]

=
[

w′Ω [I−Ω]−1 δn

]

×
[

Â′
[
I−Ω′

]−1
δn

]

= sn × bn,

delivering the desired expression. The interpretation of both terms as centrality measures is pro-

vided in the main text.

Proposition 4. If productivity shocks are i.i.d., a p−cycle ς = (n0, n1, . . . , np−1, np = i0) con-

tributes (at least) to the ACF of sector n0:

γkτ(ς) (n0) = w (ς)|k| σ2 (ŷn0t)

for k ∈ N and to the Fourier spectrum

fn0 (ω) =
σ2 (ŷn0t)

2π

1− w (ς)2

1 + w (ς)2 − 2w (ς) cos (ωτ (ς))
,

where σ (ŷn0,t) is the standard deviation of ŷn0t, τ (ς) is the duration and w (ς) the weight of cycle

ς.

Proof. As explained in the main text, all the shocks that hit sector n0 at time t, whose total

variance is σ2 (ŷn0t) , propagate along the cycle and reappear every k×τ (ς) periods later, scaled by

w (ς)k. As a result, the ACF of sector n0 is at least

γkτ(ς) (n0) = E
[
ŷntŷn,t−kτ(ς)

]
= w (ς)k σ2 (ŷn0t) ,

for k = 0, . . . ,∞. Since ŷnt is stationary, we have that γk (n0) = γ−k (n0), yielding the desired

expression.

41



The Fourier transform based on this lower estimate of the ACF is

fn0 (ω) =
1

2π

∞∑

k=−∞

γkτ (n0) e
−iωkτ(ς)

=
σ2 (ŷn0t)

2π

(

1 +
∞∑

k=1

w (ς)k
(

eiωkτ + e−iωkτ
)
)

=
σ2 (ŷn0t)

2π

(
1

1− weiωτ
+

1

1− we−iωτ
− 1

)

=
σ2 (ŷn0t)

2π

(
1− w2

1 + w2 − 2w cos (ωτ)

)

.

Proposition 5. The Fourier spectrum of aggregate real GDP is given by

fy (ω) =

N∑

n=1

µ2
nfn (ω) +

1

2π

∑

n 6=m

∞∑

k=−∞

µnµm [Γk]nm e−iωk.

Proof. The density spectrum of aggregate GDP is given by

fy (ω) =
1

2π

∞∑

k=−∞

E [ŷtŷt−k] e
−iωk

=
1

2π

N∑

n=1

∞∑

k=−∞

µ2
nγk (n) e

−iωk +
1

2π

∑

n 6=m

∞∑

k=−∞

µnµm [Γk]n,m e−iωk.

We recognize in the first term a weighted sum of each sector’s Fourier spectrum, while the second

term shows the contribution of sectoral comovements. In other words,

fy (ω) =
N∑

n=1

µ2
nfn (ω) +

1

2π

∑

n 6=m

∞∑

k=−∞

µnµm [Γk]n,m e−iωk.

42


	Introduction
	Data
	Model
	Notation
	Environment
	Planning problem
	Analytical solution
	Output Dynamics

	Persistence and Delays
	Persistence
	Delay Shocks
	Bottlenecks

	Echoes and Cycles
	Eigenvalue Spectrum
	Fourier Decomposition: a Refresher
	Network Cycles
	Counting Cycles
	From Network Cycles to Business Cycles

	Sectoral Comovements and Aggregation
	Multi-sector IRFs
	Dominant walks
	Aggregation

	Quantitative Application
	Conclusion
	Additional Figures
	Proofs

